麻豆123_99爱在线视频_蜜桃视频在线免费观看_两个奶被揉到高潮视频_久操视频在线看_亚洲精品影片

設為首頁 | 加入收藏
13585522224

產品分類

您的位置:首頁 > 產品展示 > 鋁合金 > AA8090鋁鋰合金化學成分鋰鋁合金力學性能
AA8090鋁鋰合金化學成分鋰鋁合金力學性能 AA8090鋁鋰合金化學成分鋰鋁合金力學性能 AA8090鋁鋰合金化學成分鋰鋁合金力學性能

AA8090鋁鋰合金化學成分鋰鋁合金力學性能

Some of the most important commercial alloys in this class include 2090, 2091, 8090, and Weldalite 049 that were introduced in the 1980s. The table below shows the chemical composition of these alloys.

Aluminum-lithium alloys (AL-Li) were developed primarily as direct replacements for existing aluminum alloys to reduce the weight of aircraft and aerospace structures. It has been realized that the most efficient way of doing this is to develop low density materials, since weight reduction through reduced component size often leads to low stiffness parts and reduced fatigue life. Typical components that benefit from low density alloys include structural members in airframes, aerospace vehicle skins, and liquid oxygen and hydrogen fuel tanks in spacecraft.

Aluminum producers began major development of aluminum-lithium alloys in the 1970s with the objective of introducing light weight, high stiffness aluminum alloys that could be fabricated on existing equipment and components could be handled and assembled using established techniques. Some of the most important commercial alloys in this class include 2090, 2091, 8090, and Weldalite 049 that were introduced in the 1980s. The table below shows the chemical composition of these alloys.

Composition of aluminum-lithium alloys (wt. %)

Alloy???? Cu?? Li?? Zr?? Others
2090????? 2.7? 2.2? 0.12??? -
2091????? 2.1? 2.0? 0.1???? -
8090????? 1.3? 2.45 0.12? 0.95 Mg
Weldalite 5.4? 1.3? 0.14? 0.4 Ag
049?????????????????????? 0.4 Mg
?

Pros and Cons

The advantages of Al-Li alloys over conventional aluminum alloys include relatively low densities, high elastic modulus, excellent fatigue and cryogenic strength and toughness properties, and superior fatigue crack growth resistance. The last property is a key factor for damage-tolerant aircraft design. However, it has been discovered that the high resistance to fatigue crack growth is due to a jagged crack path through the material that produces a large amount of roughness-induced crack closure under tension dominated loading. Crack closure is a phenomenon first documented in the 1970s that reduces the severity of the stress intensity at the crack tip under an externally applied load. It is therefore beneficial, provided it can be counted on to exist. Unfortunately, loading conditions that contain compression or compressive overloads, that flatten the crack surfaces, reduce or eliminate crack closure and cause crack growth rates to accelerate significantly.

Another disadvantage of these alloys is that in the strongest (desirable) heat treated conditions, the mechanical properties are often highly anisotropic. There exists, for example, significantly depressed ductility and fracture toughness in the short transverse direction. Another drawback is a very high crack growth rate for microstructurally short cracks which potentially allows for fast crack initiation. This could mean relatively early cracking in high stress regions such as rivet holes.

Current Usage

Aluminum-lithium alloys have not yet received the widespread usage and acceptance hoped y the commercial producers. However, some aluminum-lithium alloys have been utilized on recent commercial jetliner airframes and the material is used significantly in the EH101 helicopter. In addition, several AL-LI alloys are :under consideration” for a wide variety of developmental and experimental aircraft and space vehicles. The cost of Al-Li alloys is typically three to five times that of the conventional aluminum alloys they are intended to replace. This is due partly to the relatively high cost of Lithium and also to high processing and handling costs for the material.

?
Metallurgy and Properties

????? The lithium content of wrought Al-Li alloys cannot exceed the solubility limit of 4.2% Li in aluminum. In practice, the Li content is generally less (except in certain powder-metallurgy materials discussed later.) Lithium is the lightest metallic element. It has an atomic mass of about7 g/mol, a solid density of0.534 g/cm3at 20oC, a BCC crystal structure and a melting temperature of 181oC. Elemental aluminum has a FCC crystal structure and a solid density of2.7 g/cm3 at 20oC. Each 1% of lithium reduces the density of an AL-Li alloy by about 3% and increases the stiffness by about 5%.

????? High strength AL-Li alloys are obtained by precipitation heat treatments similar to those used for conventional al-alloys, with some variations. Many of the AL-Li alloys achieve peak strength only if cold-work (stretching) is performed prior to the precipitation, or age-hardening, treatment. Furthermore, ancillary key alloy elements, such as zirconium (Zr) are added to control the grain microstructure during heat treatment. The mechanical properties of some near-peak aged hardened (-T8x) AL-Li alloys are given in the table below.


Mechanical properties of typical near-peak aged AL-Li alloys

Alloy? Density?? Ductility? Elastic? Tensile?? Longitudinal??? Melting
????? (g/cm3)???? ( El % )? Modulus? Strength?????? Klc?????? Temperature
???????????????????????????? (GPa)???? (MPa)???? (MPa m1/2)????? (oC)
2090?? 2.59??????? 3-6??????? 76?????? 500?????????? 44???????? 580-660
2091?? 2.58???????? 6???????? 75?????? 550????????? >130??????? 560-670
8090?? 2.55??????? 4-5??????? 77?????? 480?????????? 75???????? 600-655

????? Alloy 2090 was developed as a replacement for 7075-T6, offering 8% lower density and 10% higher stiffness than the conventional alloy that is used heavily in aircraft structures. The 2090 alloy also offers superior corrosion resistance in salt-spray (marine) environment than 7075-T6.

????? Alloy 2091 was developed as a replacement for conventional aluminum alloy 2024-T3, offering 8% lower density and 7% higher modulus as well as superior damage tolerance.

????? Alloy 8090 was developed as a replacement for some of the most long serving of the commercial aluminum alloys, namely 2014 and 2024. Alloy 8090 has 10% lower density and 11% higher modulus than these conventional counterparts, and 8090 exhibits superior mechanical properties at cryogenic temperatures.

????? The alloy that is marketed under the trade name Weldalite 049, as its name suggest, is a weldable Al-Li alloy designed to replace 2219 and2014 inspacecraft launch systems. The density of Weldalite 049 is2.7 g/cm3 (about the same as its conventional counterparts), it has about 5% higher modulus than 2024, and tensile strengths of forged parts in excess of 700 MPa have been reported.

????? The success of failure of the current applications of these advanced alloys will likely determine their engineering significance in the long-term.

以上資料由上海艾荔艾金屬材料有限公司提供,歡迎新老客戶來電洽購。

本文來自上海艾荔艾金屬材料有限公司http://www.jshcn.cn,轉載請注明出處。

主站蜘蛛池模板: 成人在线视频亚洲|免费无码又爽又刺激毛片|#NAME?|92看片淫黄大片欧美看国产片|天天模夜夜肏狠狠的操|东日韩二三区 在线观看国产免费|亚洲免费成人在线视频|日韩免费一级毛片|国产综合久久|爱情岛论坛亚洲品质自拍hd|欧美成人免费一区二区 | 婷婷五月综合国产激情|亚洲自拍一区在线观看|日本做暖暖视频高清观看|国产高清一区二区三区综合四季|蜜桃=av影院|天美传媒一区二区 | 亚洲欧美一级久久精品|在线观看午夜视频|日本日韩欧美|久久久新视频|国产精品一色哟哟|98精品在线 | 老妇激情毛片免费|草草福利视频|国产精品国产自线拍免费软件|日本免费一级视频|国产在线观看|无码区国产区在线播放 | 成人国产午夜在线观看|久久综合九色综合97欧美|99视频免费观看|久久久久久久国产精品毛片|久久99精品国产99久久|天堂成人国产精品一区 | 国产毛片久久久久久国产毛片|日韩在线免费观看中文字幕|久久sp|91精品国产色综合久久久浪潮|天天躁狠狠躁夜躁2020挡不住|日本=a视频在线观看 久久精品九九热无码免贵|日本=aⅴ精品一区二区三区|亚洲国产精品一区二区成人片|国产精品91久久|久草=av在线播放|亚洲在线www | 特级毛片免费观看视频|国产精品视频久久久久久久|免费看=a级大片|浴室人妻的情欲HD三级|麻豆.=apk|在线片播放 | 亚州性色|国产的欧美一区二区三区|中国毛片视频|久久艹在线|国产在线www|久久久精品日韩免费观看 | 日韩二区精品|亚洲操p|c=aoporn97免费公开视频|国产精品情侣高潮呻吟|免费国产内射|中文字字幕中文在线无码乱码 | 国产成人精品777|久久久久国内精品|国产乱妇无乱码大黄=a=a片|久久字幕网|一区二区三区无码高清视频|在线视频综合 | 免费观看=a级毛片在线播放|特极毛片|男男做爰猛烈叫床视频gv|亚洲日本在线在线看片4k超清|一级黄色免费观看视频|亚洲第一福利网站在线观看 | 丁香花在线影院观看在线播放|成人网页在线|日本一码二码三码在线|偷拍25位美女撒尿bbb片户外|十八禁韩国女主播vip秀362视频|色哺乳xxxxhd国产 | 日韩黄色三级在线观看|久久9191|国产不卡一二三|久久中文字幕免费视频|在线观看精品视频|亚洲911精品成人18网站 | 国产精品久久久久久久浪潮网站|亚洲青草视频|乌克兰18极品XX00喷水|#NAME?|亚洲综合在线一区二区三区|国产超碰人人做人人爱ⅴ=a 91精品一区二区三区在线|情侣偷拍在线一区|天堂网在线.www天堂|成人=a毛片免费全部播放|日本国产一区二区|美女被日在线观看 | 日韩高清黄色片|夜夜爽一区二区三区|老司机福利在线观看|狠狠色噜噜狼狼狼色综合久|精品免费观看视频|小早川怜子一区二区的演员表 | 尤物午夜在线|97插插插|欧美成人一区二区三区在线视频|国产一级片精品|亚洲毛片亚洲毛片亚洲毛片|91免费视频观看 | 亚洲久久综合|久久伊甸园|青草国产超碰人人添人人碱|91资源在线播放|九九九免费观看视频|又黄又爽的免费视频 | 吃奶摸下的激烈视频|亚洲人成网站18禁止中文字幕|无码=aV天堂一区二区三区|男人猛躁进女人视频免费播放|精品一区在线观看视频|欧美午夜=a级限制福利片 | 亚洲狠狠婷婷综合久久蜜桃|国产成人精品福利网站人|爆乳美女脱内衣18禁裸露网站|免费一级特黄特色大片|欧美成人亚洲|国产精品麻豆v=a在线播放 | 国内精品久久久久久TV|久久叉叉|动漫=av网|欧美巨猛xxxx猛交黑人97人|亚洲人免费视频|欧洲成年人性生活免费视频 | 91免费版视频|在线观看人成激情视频|午夜激情视频免费|91麻豆精品国产综合久久久|日韩精品1|夜夜爱视频 | 高清偷自拍第1页|午夜精品久久久久久久爽|黄色影院网站|国产午夜无码片在线观看影院|性一交一乱一乱一视频96|久热精品在线观看视频 | 中文字幕免费中文|青青草免费在线视频观看|91探花系列在线播放|国产精品久久久久久久久久免|18禁真人抽搐一进一出在线|日本三级韩国三级人妻 | 精品少妇一区二区三区日产乱码|日本久久久久久|麻豆91视频|在线不卡小视频|国产欧美一区二区三区在线看蜜臀|黄色一级大片免费看 | 夜夜夜夜操18岁|c=aoporm超碰国产精品|扒开腿挺进湿润的花苞hd视频|激情三区|性bbwbbw日|爱爱免费视频 | HD性丰满白嫩白嫩少妇=aV|免费成人黄色大片|久久精品中文字幕|久久无码国产专区精品|欧美=a∨|91精品一久久香蕉国产线看观看软件 | 秋霞国产精品一区二区|无遮无挡非常色的视频免费|日韩不卡一卡二卡3卡四卡网站|在线高清国语成人网站|2020天天干夜夜爽|国产99视频精品免费专区 | 色综合天天综合高清网国产在线|国产精品九九九九|国产乱妇乱子|国产色情理论在线观看视频|久久影院精品|寂寞骚妇被后入式爆草抓爆 | 久久国产超碰女女=av|2019最新国产拍自产在线|日韩xxxxxxxxx|国产在线观看=av黑料在线不打烊|国产精品久久久乱弄|国产精品一区二区三区四区色 | 亚洲免费福利|亚洲性夜夜时|亚洲第二页|日本羞羞视频在线观看|私人影院在线|热久久99热 | 在线视频爽爽|最新中文字幕=aV无码不卡|精品无码国产自产拍在线观看蜜|h333.tv免费看片|色哟哟软件|国产乱子伦一区二区三区= | 日韩小视频网站hq|免费观看视频的网站视频|色情无码WWW视频无码区|国产精=av|国产人妻无码一区二区三区不卡|色我综合 | 国产小视频在线免费观看|欧美亚洲综合另类|亚洲精品在线第一页|日操视频|亚洲精品久久无码老熟妇|在线观看视频色 | 青青草青青操|www.jjzz日本|最近中文字幕完整视频高清|91影院在线观看视频|国产精品水嫩水嫩|男女夜色爽爽影院 | 免费在线观看黄色大片|综合一区无套内射中文字幕|你好星期六在线免费观看|91探花福利精品国产自产在线|成人18夜夜网深夜福利网|九九影院理论片在线观看一级 | 丝袜美腿一区二区三区在线观看|91手机在线视频|无套内内射视频网站|亚洲国产精久久久久久久|午夜丰满少妇性开放视频|性大毛片视频 | 亚洲国产精品无码第一区二区三区|十大免费最污的软件|玖玖99视频|激情动漫在线观看|#NAME?|蝌蚪视频窝在线播放 | 丁香五月好婷婷深深爱|欧美、另类亚洲日本一区二区|www.com国产|免费观看又色又爽又湿的视频软件|国产一级生活片|一级黄色故事片 | 亚洲线精品一区二区三区|亚洲综合中文|特级一级片|在线观看国产视频一区|国产乱码卡1卡二卡3卡四卡|国产v亚洲v天堂无码网站 | 性欧美老人牲交xxxxx视频|成年人在线观看网址|日本黄色录像片|98婷婷狠狠成人免费视频|991久久|粉嫩欧美一区二区三区高清影视 | 尤物午夜在线|97插插插|欧美成人一区二区三区在线视频|国产一级片精品|亚洲毛片亚洲毛片亚洲毛片|91免费视频观看 |